PAGE
108

Chapter 6

Chapter 6 Physical Database Design and Performance

Chapter Objectives

This chapter presents the basic steps that are required to develop an effective physical database design. Physical database design is very important since it immediately impacts those factors that are important to the end user--data integrity and security, response times, user friendliness, and so on. First we present a simple approach to estimating the volume of data in a database, as well as the probable data usage patterns. Next we discuss issues associated with defining fields, including data type determination, coding and compression techniques, controlling data integrity, and handling missing data. We then discuss designing physical records and include an expanded section on denormalization. Vertical and horizontal partitioning are covered next. We describe the basic file organizations and the tradeoffs that are typically involved in selecting a file organization. We examine the use of indexes, and have added bitmap indexes to this section. File access performance is discussed, including a new discussion of RAID technology. The chapter concludes with a comparison of available database architectures. The chapter continues to emphasize the physical design process and the goals of that process.

Specific student learning objectives are included at the beginning of the chapter. From an instructor's point of view, the objectives of this chapter are:

1. To present physical database design as a critical element in achieving overall database objectives, rather than as an afterthought.

2. To ensure that students understand the factors that must be considered in distributing data effectively, and how a simple model can be used to obtain at least a first-cut distribution.

3. To provide students with a sound understanding of the use of indexes, and the tradeoffs that must be considered in their use.

4. To ensure students understand that denormalization must be used with great care and for specific reasons.

Classroom Ideas

1. Point out to your students that physical database design is the last step in the database design process. Suggest to your students that this step is where the "rubber meets the road" since, regardless of how well previous steps may have been completed, users will not be happy with a sloppy physical design.

2. Discuss data volume and usage analysis, using Figure 6-1.

3. The Y2K problem can be used to highlight the process of selecting data types. The DATE data type is particularly interesting, both because of this problem, and because of its capability to calculate using date arithmetic in most RDBMSs.

4. Using examples of each can bring the importance of data integrity home. For example, you can encourage the students to think through on their own or in small groups situations where default values will improve data integrity, and situations where using them may decrease data integrity. Range controls, null value controls, and referential integrity can also be addressed this way.

5. Discuss denormalization and the conditions under which this approach may be considered, referring to the discussion in the text. Be sure to describe the tradeoffs in denormalization.

6. Start a discussion of indexes by having the students give common examples (index at the end of their database text, Yellow Pages, card catalog, etc.). Then describe and illustrate the use of each type of index using Figure 6-7.

7. Review the basic types of file organizations. Ask your students to give examples other than those described in the text for each organization.

8. Encourage a discussion of the comparative desirability of the various levels of RAID. Students will probably be surprised to figure out that the answer to this question will not be a sequential order, and should understand that the ordering would be affected by the performance required by the systems.

9. Similarly, a comparison of the database architectures is a good opportunity to emphasize that hierarchical and network models are still in use, particularly for transaction processing systems, and that object-oriented databases are becoming much more common.

10. Query optimization is a fascinating subject that is only touched on lightly in the book. Further examples, perhaps taken from the work of Joe Celko (Joe Celko's SQL Puzzles and Answers, and so forth) will be interesting to the students if time permits.

Review Questions

1. Define each of the following terms:

a. File organization. A technique for physically arranging the records of a file on secondary storage devices.

b. Sequential file organization. Records in the file are stored in sequence according to a primary key value.

c. Indexed file organization. Records are either stored sequentially or non-sequentially and an index is created that allows software to locate individual records.

d. Hashing file organization. The address for each record is determined using a hashing algorithm.

e. Denormalization. The process of transforming normalized relations into unnormalized physical record specifications.

f. Index. A table or other data structure used to determine the location of rows in a file that satisfies some condition.

g. Secondary key. One or a combination of fields for which more than one record may have the same combination of values.

h. Data type. Each unit of a detailed coding scheme recognized by system software, such as a DBMS, for representing organizational data.

i. Bitmap index. A table of bits in which each row represents the distinct values of a key and each column is a bit, which when on indicates that the record for that bit column position has the associated field value.

j. Redundant Arrays of Inexpensive Disks (RAID). A set, or array, of physical disk drives that appear to the database user (and programs) as if they form one large logical storage unit.

k. Join index. An index on columns from two or more tables that come from the same domain of values.

l. Stripe. The set of pages on all disks in a RAID that are the same relative distance from the beginning of the disk drive.

2. Match the following terms to the appropriate definitions:

d bitmap index

f hashing algorithm

 a​ page

 g physical record

 e pointer

 b blocking factor

 c physical file

3. Contrast the following terms:

a. Horizontal partitioning; vertical partitioning. Horizontal partitioning is very similar to creating a supertype/subtype relationship because different types of the entity (where the subtype discriminator is the field used for segregating rows) are involved in different relationships, hence different processing. Neither horizontal nor vertical partitioning prohibits the ability to treat the original relation as a whole.

b. Physical file; tablespace. A physical file is a named portion of secondary memory (magnetic tape, hard disk) allocated for the purpose of storing records; a tablespace is a named set of disk storage elements in which physical files for database tables may be stored.

c. Physical record; physical file. A physical file is a named portion of secondary memory (a magnetic tape or hard disk) allocated for the purpose of storing physical records. Physical records of several types can be clustered together into one physical file in order to place records frequently used together close to one another in secondary memory.

d. Page; physical record. Often a page will store multiple physical records. Depending on the computer system, a lengthy physical record may or may not be allowed to span two pages.

e. Secondary key; primary key. A secondary key is one or a combination of fields for which more than one record may have the same combination of values, while the primary key is one or a combination of fields for which every record has a unique value. Hence the primary key is a unique identifier for a row.

4. Three major inputs to physical design:

a. Logical database structures developed during logical design.

b. User processing requirements identified during requirements definition.

c. Characteristics for the DBMS and other components of the computer operating environment.

5. Key decisions in physical database design:

a. Choosing the storage format (called data type) for each attribute from the logical data model; the format is chosen to minimize storage space and to maximize data integrity.

b. Grouping attributes from the logical data model into physical records; you will discover that although the columns of a relational table are a natural definition for the contents of a physical record, this is not always the most desirable grouping of attributes.

c. Arranging similarly structured records in secondary memory (primarily hard disks) so that individual and groups of records can be stored, retrieved, and updated rapidly (called file organizations). Consideration must be given also to protecting data and recovering data after errors are found.

d. Selecting structures for storing and connecting files to make retrieving related data more efficient (called indexes and database architectures).

e. Preparing strategies for handling queries against the database that will optimize performance and take advantage of the file organizations and indexes that you have specified. Efficient database structures will be of benefit only if queries and the database management systems that handle those queries are tuned to intelligently use those structures.
6. Composite usage maps:

Figure 6-1 illustrates a composite usage map, which shows both data volume and access frequencies for the illustrative Pine Valley Furniture inventory system. The volume and frequency statistics are generated during the systems analysis phase of the systems development process when systems analysts are studying current and proposed data processing and business activities. The data volume statistics represent the size of the business, and should be calculated assuming business growth over a several year period. The access frequencies are estimated from the timing of events, transaction volumes, and reporting and querying activities. Since many databases support ad hoc accesses, and such accesses may change significantly over time, the access frequencies tend to be less certain than the volume statistics. Fortunately, precise numbers are not necessary. What is crucial is the relative size of the numbers, which will suggest where the greatest attention needs to be given in order to achieve the best possible performance. It might also be helpful to know if an access results in data creation, retrieval, update, or deletion. Such a refined description of access frequencies can be handled by additional notation on a diagram such as in Figure 6-1 or by text and tables kept in other documentation.

7. Developing field specifications:

a. Define the data type used to represent values of the field.

b. Establish data integrity controls for the field, including default values, ranges, null value controls, and referential integrity.

c. Determine how missing values for the field will be handled.

d. Other field specifications, such as display format, must be made as part of the total specification of the information system, but those specifications are typically handled by programs rather than by the DBMS.

8. Selecting a field data type:

These four objectives will have varying relative importance for different applications:

a. Minimize storage space

b. Represent all possible values

c. Improve data integrity

d. Support all data manipulations

9. Coding or compressing field values:

Where attributes have a sparse set of values or a volume so large that considerable storage space will be consumed, possibilities for coding or compressing field values should be considered. Large data fields mean that data are further apart, which yields slower data processing. Where the set of valid values is small, translation into a code that requires less space is a possibility. Data compression techniques also use coding to reduce the storage space required for commonly recurring patterns of data.

10. Controlling field integrity:

a. Specify default values.

b. Specify a range or list of permissible values.

c. Set null value permissions.

d. Establish referential integrity.

11. Three ways to handle missing field values:

a. Substitute an estimate of the missing value. For example, for a missing sales value when computing monthly product sales, use a formula involving the mean of the existing monthly sales values for that product indexed by total sales for that month across all products. Such estimates must be marked so users know that these are not actual values.

b. Track missing data so that special reports and other system elements cause people to quickly resolve unknown values. Setting up a trigger in the database can accomplish this. A trigger is a routine that will automatically execute when some event occurs or time period passes. One trigger could log the missing entry to a file when a null or other missing value is stored, and another trigger could run periodically to create a report of the contents of this log file.

c. Perform sensitivity testing so that missing data are ignored unless knowing a value might significantly change results. For example, if total monthly sales for a particular salesperson were almost over a threshold that would make a difference in that person’s compensation, then attention would be drawn to the missing value. Otherwise, it would be ignored. This is the most complex of the methods mentioned and requires the most sophisticated programming, which must be written in application programs since DBMSs do not have the sophistication to handle this method.

12. Effect of normalizing relations on physical record storage:

The above discussion of physical record design concentrated on efficient use of storage space. In most cases, the second goal of physical record design—efficient data processing—dominates the design process. Efficient processing of data, just like efficient accessing of books in a library, depends on how close together related data (or books) are. Often all the attributes that appear within a relation are not used together, and data from different relations are needed together to answer a query or produce a report. Thus, although normalized relations solve data maintenance anomalies, normalized relations, if implemented one for one as physical records, may not yield efficient data processing.

13. Situations that suggest the possibility of denormalization:

a. Two entities with a one-to-one relationship. Even if one of the entities is an optional participant, if the matching entity exists most of the time, then it may be wise to combine these two relations into one record definition (especially if the access frequency between these two entity types is high). Figure 6-3 shows student data with optional data from a standard scholarship application a student may complete. In this case, one record could be formed with four fields from the STUDENT and SCHOLARSHIP APPLICATION normalized relations. (Note: In this case, fields from the optional entity must have null values allowed.)

b. A many-to-many relationship (associative entity) with nonkey attributes. Rather than joining three files to extract data from the two basic entities in the relationship, it may be advisable to combine attributes from one of the entities into the record representing the many-to-many relationship, thus avoiding one join in many data access modules. Again, this would be most advantageous if this joining occurs frequently. Figure 6-4 shows price quotes for different items from different vendors. In this case, fields from ITEM and PRICE QUOTE relations might be combined into one record to avoid having to join all three files together. (Note: This may create considerable duplication of data—in the example, the ITEM fields, such as Description, would repeat for each price quote—and excessive updating if duplicated data changes.)

c. Reference data. Reference data exists in an entity on the one-side of a one-to-many relationship, and this entity participates in no other database relationships. You should seriously consider merging the two entities in this situation into one record definition when there are few instances of the entity on the many-side for each entity instance on the one-side. See Figure 6-5 in which several ITEMs have the same STORAGE INSTRUCTIONs and STORAGE INSTRUCTIONs only relate to ITEMs. In this case, the storage instruction data could be stored in the ITEM record, creating, of course, redundancy and potential for extra data maintenance.

14. Advantages and disadvantages of horizontal and vertical partitioning:

Advantages of partitioning:

a. Efficiency: Data used together are stored close to one another and separate from data not used together.

b. Local Optimization: Each partition of data can be stored to optimize performance for its own use.

c. Security: Data not relevant to one group of users can be segregated from data they are allowed to use.

d. Recovery and uptime: Smaller files will take time to recover, and other files are still accessible if one file is damaged, so the effects of damage are isolated.

e. Load balancing: Files can be allocated to different storage areas (disks or other media), which minimize contention for access to the same storage area or even allows for parallel access to the different areas.

Disadvantages of partitioning:

a. Inconsistent access speed: Different partitions may yield different access speeds, thus confusing users. Also, when data must be combined across partitions, users may have to deal with significantly slower response times.

b. Complexity: Partitioning is usually not transparent to programmers, who will have to write more complex programs due to violations of third normal form.

c. Anomalies: Insertion, deletion, and update anomalies are possible and special programming is required to avoid these problems.

d. Extra space and update time: Data may be duplicated across the partitions, taking extra storage space, compared to storing all the data in normalized files. Updates, which affect data in multiple partitions, can take more time than if one file were used.

15. Seven criteria for selecting a file organization:

a. Data retrieval speed

b. Data input and maintenance transaction processing throughput rate

c. Storage efficiency

d. Failure or data loss protection level

e. Frequency of data reorganization required

f. Ability to accommodate growth

g. Security protection provided

16. The desirability of a bitmap index:

A bitmap is ideal for attributes that have few possible values, which is not true for conventional tree indexes. A bitmap also often requires less storage space (possibly as little as 25 percent) than a conventional tree index (Schumacher, 1997), but for an attribute with many distinct values, a bitmap index can exceed the storage space of a conventional tree index. One bitmap can be used for multiple keys in order to perform searches on elements that would satisfy more than one condition at a time.

17. The benefits of a hash index table:

Using a hashing algorithm allows for rows stored independently of the address, so that whatever file organization makes sense can be used for storage. Also, because index tables are much smaller than a data table, the index can be more easily designed to reduce the likelihood of key collisions or overflows.

18. The purpose of clustering data in a file:

Some database systems allow physical files to contain records with different structures, e.g., rows from different tables may be stored in the same disk area. This clustering reduces the time to access related records compared to the normal allocation of different files to different areas of a disk. Time is reduced since related records will be closer to each other than if the records are stored in separate files in separate areas of the disk.

19. Seven rules of thumb for choosing indexes for relational databases.

a. Indexes are more useful on larger tables.

b. Specify a unique index for the primary key of each table.

c. Indexes are more useful for columns that frequently appear in WHERE clauses of SQL commands either to qualify the rows to select (e.g., WHERE FINISH = ‘Oak’, for which an index on Finish would speed retrieval) or for linking (joining) tables (e.g., WHERE PRODUCT.PRODUCT_ID = ORDER_LINE.PRODUCT_ID, for which a secondary key index on Product_ID in the Order_Line table and a primary key index on Product_ID in the Product table would improve retrieval performance). In this second case, the index is on a foreign key in the Order_Line table that is used in joining tables.

d. Use an index for attributes referenced in ORDER BY (sorting) and GROUP BY (categorizing) clauses. You do have to be careful, though, about these clauses. Be sure that the DBMS will, in fact, use indexes on attributes listed in these clauses (e.g., Oracle uses indexes on attributes in ORDER BY clauses but not GROUP BY clauses).

e. Use an index when there is significant variety in the values of an attribute. Oracle suggests that an index is not useful when there are fewer than 30 different values for an attribute, and an index is clearly useful when there are 100 or more different values for an attribute. Similarly, an index will be helpful only if the results of a query which uses that index do not exceed roughly 20 percent of the total number of records in the file (Schumacher, 1997).

f. Check your DBMS for the limit, if any, on the number of indexes allowable per table. Many systems permit no more than 16 indexes, and may limit the size of an index key value (e.g., no more than 2000 bytes for each composite value). So, you may have to choose those secondary keys that will most likely lead to improved performance.

g. Be careful about indexing attributes that have null values. For many DBMSs, rows with a null value will not be referenced in the index (so they cannot be found from an index search of ATTRIBUTE = NULL). Such a search will have to be done by scanning the file.

20. Two views of multidimensional databases:

a. Multidimensional table: Each cell contains one or more simple attributes and the dimensions are ways to categorize the raw data. These categories, or dimensions, are the factors on which users want to summarize or segment the data, such as time periods, geography, lines of business, or people. A cell contains data relevant to the intersection of all of its dimension values. For example, a cell might hold the number of units sold attribute for a given time period, location, line of business, and salesperson.

b. Star-schema: At the center is a fact table, equivalent to the cell in the multidimensional view. This table contains all the raw attributes and a composite key made up of the primary keys of all the surrounding dimension tables. The surrounding dimension tables define each of the ways to categorize data, such as all the description data about each salesperson.

21. How can the use of the EXPLAIN command help in writing a more efficient query:

EXPLAIN plan will show exactly how a query will be submitted to the DBMS for processing. We can see indexes used, servers used, and how tables will be joined. Different execution plans for the query written in several different ways will help identify the least-cost execution for a desired query. The query with the best performance can then be chosen.

22. Four options for optimizing query performance:

a. The most common approach is to replicate the query so that each copy works against a portion of the database, usually a horizontal partition (sets of rows). The partitions need to be defined in advance by the database designer. The same query is run against each portion in parallel on separate processors, and the intermediate results from each processor are combined to create the final query result as if the query were run against the whole database.

b. A second option for using parallel scanning of a table occurs when the query is written. When the DBMS parses a query, it decides, based on statistics it keeps about the database structure, number of distinct values for fields, and the query, what is the best strategy, called a query plan, for accessing each index and table. The DBMS includes rules that consider these statistics and the DMBS uses these rules to pick the best query plan. The module of the DBMS that does these calculations is called the cost-based optimizer. The query plan calculated by the cost-based optimizer says what table or index to use first and how to use it, then what table or index to use next, and so on. Oracle includes an ANALYZE command which collects these statistics and stores them for use by the DBMS. It is possible in some DBMS to give the DBMS a hint or suggestion within the query to force the DBMS to process the query in a certain way.
c. Avoid the use of subqueries. SQL allows nesting of queries, or writing one query inside another. The types of queries are less efficient than queries that retrieve the same data set with the subquery.
d. Break complex queries into multiple, simple parts. Because a DBMS may only have one index per query, it is often good to break a complex query down into multiple, simpler parts which each use and index. Then combine the results of the smaller queries together.
23. Choosing the level of RAID to use:

RAID-1 is best for fault-tolerant, database maintenance applications (those requiring a high percentage of up-time) or when only two disk drives are affordable. RAID-5 is best for read-intensive applications against very large data sets and at least three (and more typically five or more) disk drives are affordable.

Answers to Problems and Exercises

a. STUDENT_ID in STUDENT because it is a primary key and the index would enforce uniqueness of the key.

GPA in STUDENT because it is a nonkey cluster attribute used to qualify record retrieval

STUDENT_NAME in STUDENT because it is a nonkey attribute used to sort records.

STUDENT_ID, COURSE_ID in REGISTRATION because it is a concatenated primary key and the index would enforce uniqueness of the key.

b. CREATE UNIQUE INDEX STUINDX ON STUDENT (STUDENTID);

CREATE INDEX CLUST_INDX

ON STUDENT (GPA)

CLUSTER;

CREATE INDEX NAMEINDX ON STUDENT (STUDENT_NAME);

CREATE INDEX REGSINDX ON REGISTRATION(STUDENT_ID, COURSE_ID);

2.

3 Assuming that Vendor_ID and Price hold data that fits the two byte field size:

Vendor_ID
SMALLINT

Address

VARCHAR(40)

Contact_Name
VARCHAR(25)

Item_ID

INTEGER

Description
VARCHAR(35)

Price

SMALLINT

4 The answer to this question will vary for different universities, but common situations are used here. Since the majority of students are accepted in the first year after high school graduation, and university attendance is increasing, the average age of students in the first year of college would be a good choice for a default value. Often students are accepted at the different schools within the university after the second year. Therefore we need to add two years to the first answer if we design the system for a business school, for example. Degree seeking students are generally younger than non-degree seeking students, and the default value for this field might be a higher number for non-degree seeking students. Graduate students have already completed a degree, which usually takes at least four years, so a graduate university would also use a higher default value.

5 Since every student who hasn't explicitly declared a major of his or her choice would be assigned this value, it should be considered a default value. The null value is an empty value.

6 EMPLOYEE_SCHEDULE (Department_ID, Employee_ID, Where_Work, Employee_Name, Employee_Address, Date,)

A many-to-many relationship (associative entity) with nonkey attributes. Rather than joining three files to extract data from the two basic entities in the relationship, it may be advisable to combine attributes from one of the entities into the record representing the relation the many-to-many relationship, thus avoiding one join in many data access modules. This approach is advantageous as this joining will occur frequently.
DEPARTMENT (Department_ID, Manager_ID, Sales_Goal, Store_ID, Region, Manager_ID, Square_Feet)
This reference data denormalization option wouldn't be recommended, since the table STORE is further related to a table MANAGER, and there are probably more than just a few departments in each STORE.

7 Sixteen records will fit on one page, using 3840 of the 4000 bytes available per page. This means that 4000 - 3840 =160 bytes will be lost from each page, since records may not span pages. A total of 1000/16 or 62.5 sets of 16 bytes will be needed, or 63 pages. Sixty-three pages will take up 252,0000 bytes of storage.

8 Disadvantages of partitioning:

a. Inconsistent access speed. Different partitions may yield different access speeds, which may confuse users.

b. Complexity. Partitioning is usually not transparent to programmers, who will have to write more complex programs due to the violations of third normal form.

c. Anomalies. The violations of third normal form will lead to anomalies.

d. Extra space and update time. Duplication of data across the partitions will use more storage space than data stored in normalized files. Updates may well affect data in multiple partitions.

Conditions that influence the use of partitioning:

a. Criticality of fast and consistent record access times to users.

b. Sophistication of in-house programming talent.

c. Storage space availability.

9 If the orders are sorted in the same order as the sequential file records are stored, then sequential scanning of the data could be based on several sorted orders. But, if the records were stored in some other sequential order, such as CUSTOMER_NUMBER, then a separate sequential scan would be needed for each order number.

a. Records can be accessed sequentially in two directions - from start to end and vice versa.

b. What is described is a simple bi-directional pointer, which will allow traversal through the records in two directions, forward and backward, but does not allow for different sequences.

10 A row selection qualification clause will be used:

WHERE (Major = "MIS" or Major = "Computer Science") And Age > 25 And Marital_Status = "single" Or (Major = "Computer Engineering" And Marital_Status = "single" And Home_Zipcode = 45462).

	Student Table Row Numbers

	Marital_

Status
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111

	Single
	0
	0
	0
	1
	1
	1
	1
	0
	1
	0
	1

	Married
	1
	0
	1
	0
	0
	0
	0
	1
	0
	0
	0

	Other
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0

A bitmap is ideal for attributes that have a few possible values. It requires less storage space (possibly as little as 25 percent) than a conventional tree index.

13

	CustRowID
	OrderRowID
	Cust#

	10001
	30004
	C2027

	10002
	30002
	C1062

	10003
	30003
	C1062

	10004
	30001
	C3861

	…
	…
	…

14 Consider Figure 6-7c.

When one of the leaves is full and a new record needs to be added to that leaf, the leaf node may be turned into an intermediate parent node. This node would then serve as an index to those records, and an additional leaf node (containing the actual records) will be attached to that intermediate node. The parent node will contain pointers to the records in the leaf node.

15
	Sale_ID
	 Number_of_Units
	Product_Description
	Period
	 Location_ID

16 A cluster is defined by the tables and the column or columns by which the tables are usually joined. The column by which they are joined (foreign key) would need to have the same value in the two tables for the adjacent records. If the tables are populated with data before clustering occurs, this is much harder to achieve. Hence, in Oracle tables are assigned to a cluster at the time of their creation.

17 Consider the qualification clause from problem 12:

SELECT SUDENT_ID, STUDENT_NAME

FROM STUDENT

WHERE (Major = "MIS" or Major = "Computer Science") And Age > 25 And

Marital_Status = "single" Or (Major = "Computer Engineering" And Marital_Status = "single" And Home_Zipcode = 45462);

There are two general approaches for parallel processing of a query:

1. To ensure that subsequent scans of this table are performed in parallel using at least three processors, you would first alter the structure of the table with the SQL command:

ALTER TABLE STUDENT PARALLEL 3,

and then run the query itself.

2. The second option would be to give the DBMS a hint within the query. This will force it to process the query in a certain way. In Oracle:

SELECT /*+ FULL(STUDENT) PARALLEL(STUDENT,3) */ COUNT(*)

FROM STUDENT

WHERE (Major = "MIS" or Major = "Computer Science") And Age > 25

And Marital_Status = "single" Or (Major = "Computer Engineering" And Marital_Status = "single" And Home_Zipcode = 45462);

Would enforce a full scan on the table STUDENT, and its processing in parallel, by three CPUs. (Note: In Oracle parallel processing is possible only when a table is scanned, not when it is accessed through an index.)

18 In RAID-5 several programs could access the array in parallel. Write operations on records are done in parallel too. Parity information, however, still has to be updated on one of the other three drives at the time of every single write operation. The six alternative scenarios are:

1. 9 and 2

2. 3 (or 7)

3. 7 (or 3), or

1. 9 and 3,

2. 7 (or 2)

3. 2 (or 7), or

1. 9 and 7,

2. 3 (or 2)

3. 2 (or 3.)

Suggestions for Field Exercises

1. A good starting point for the purposes of this assignment would be to identify any DBMSs that support complex data types like graphics, video, and sound. Object-oriented databases will stand out for their abilities in this regard. This is the newest DBMS technology and larger organizations are gaining experience with it by selectively using it when complex data or event-driven programming is appropriate for the application.

2. Students who investigate this question may become interested in understanding the difference between symmetric multiprocessing (SMP) and massively parallel processing (MPP), topics that are covered in more depth in Chapter 8. In a typical SMP architecture, the machine has up to a few dozen processors, and each processor shares all hardware resources, including memory, disks, and the system bus. Because each processor can see all of the available memory, communicating between processors is straightforward -- one processor can easily view the results generated by another processor simply by looking at the appropriate section of memory. MPP machines support multiple nodes that each have their own private memory, and that communicate via passing messages over an interconnect. SMP systems seem to be best suited for either mission-critical or OLTP applications, where the application's growth rate is slow and steady at less than 20 percent annually and the amount of raw data is in the range of 10 to 100GB. MPP systems are best suited for either complex analytical or very large decision-support applications.

Students may also discover that several options exist for breaking apart a query into modules that can be processed in parallel. All options are not available with every DBMS, and each DBMS often has unique options due to its underlying design.

3. A major advantage of the object-oriented data model is that complex data types like graphics, video, and sound are supported as easily as simpler data types. This is the newest DBMS technology and larger organizations are gaining experience with it by selectively using it when complex data or event-driven programming is appropriate for the application.

4. In choosing a file organization for a particular file in a database, students should find that database designers consider many of these seven factors:

a. Fast data retrieval

b. High throughput for processing data input and maintenance transactions

c. Efficient use of storage space

d. Protection from failures or data loss

e. Minimizing need for reorganization

f. Accommodating growth

g. Security from unauthorized use

Secondary key indexes are important for supporting many reporting requirements and for providing rapid ad hoc data retrieval. Indexed sequential in comparison to indexed nonsequential allows more efficient use of space and faster sequential data processing without much if any sacrifice in random data record accessing speed. A bitmap is ideal for attributes that have even a few possible values, which is not true for conventional tree indexes. Indexes may be deleted, because of storage space constraints or to reduce maintenance overhead.
5. Redundant Arrays of Inexpensive Disks (RAID) is hardware and software technology that helps the database designer to accomplish parallel database processing. The result of parallel processing of data is that several input/output operations, when done in parallel, take as long as only one such operation. RAID-1 is best for fault-tolerant, database maintenance applications (those requiring a high percentage of up time) or when only two disk drives are affordable. RAID-5 is best for read-intensive applications against very large data sets and at least three (and more typically five or more) disk drives are affordable. DBAs favor RAID-1 because of the fast recovery time when a problem develops with a disk, but they may not always be able to afford the required storage space.

Project Case

Project Questions

a. Data volume estimates (data volume and frequency-of-use statistics, representing them by adding notation to the EER diagram.)

b. Definitions of each attribute

c. Descriptions of where and when data are used: entered, retrieved, deleted, and updated (including frequencies)
d. Expectations or requirements for response time and data security, backup, recovery, retention, and integrity
e. Descriptions of the technologies (database management systems) used for implementing the database. The efficient use of secondary storage is influenced both by the size of physical record and structure of secondary storage. Hence we need to know the page size, whether a physical record is allowed to span two pages, and the blocking factor, etc.
1. Data partitioning would be beneficial, if the database is going to be distributed among different machines. Horizontal partitioning distributes all the rows of a table in separate files, based upon common column values. When data is needed to be viewed together the SQL union operator may be used to display all rows of data in one table. Vertical partitioning, or distributing the columns of a relation in separate files by repeating the primary key for each file, would be another possibility. By joining the tables together all data may be viewed together.

Project Exercises

a. A choice like SMALLINT instead of INTEGER data type would help minimizing storage space. VARCHAR instead of CHAR would dynamically allocate memory space for the adjacent fields, and again will help in minimizing storage space.

b. In the PATIENT_CHARGES table (Chapter 1, Figure 1-15) the ITEM_DESCRIPTION field has a limited number of possible values. By creating a code or translation table, each field value can be replaced by a code, a cross-reference to the look-up table, similar to a foreign key.

c. Any fields except the primary key field and required fields.

d. The date of a treatment on a patient is of great importance as a reference for the purposes of consequent diagnosis or treatment procedures and for risk management of potential liability. Therefore, it may be a good idea to substitute an estimate of the missing value, and warn the user of this substitution. In this case, a preferable option is to track missing data so that special reports and other system elements cause people to quickly resolve unknown values.

2. PATIENT and TREATMENT records could be denormalized by including information about treatments received as a column(s) in the PATIENT table.

When this table is accessed, the TREATMENT data will also show up without any further access to secondary memory. However, each time that we need to find information that would associate the physician with a treatment performed by him or her, both the PHYSICIAN and PATIENT tables would still need to be accessed.

3. Clustering reduces the time to access related records compared to the normal allocation of

different files to different areas of a disk. Clustering records is best used when the records are fairly static. Since the number of accesses per hour for each of the tables are represented by relatively large numbers, updates and deletes are most likely to happen often for all records. The patient records are the most dynamic. Items, physicians, and treatments are much more static data, so one could consider clustering them with the patient records.

4. An example of such an index:

CREATE UNIQUE INDEX EMPINDEX ON EMPLOYEE_T(EMP_NO);

5. Indexes will be created on the TREATMENT_DATE attribute. Assumptions: Since

Physician_ID and Treatment_ID are primary keys, indexes on them are created at the time of the CREATE TABLE command executions.
70

40

150

80

40

75

75

200

2000

(40)

75%

30%

50

750

300

1000

o

MANUFACTURED

PART

PURCHASED

PART

QUOTATION

SUPPLIER

PART

Seminoles

Sooners

Minors

Panthers

Hawkeyes

Hoosiers

Flashes

Flyers

Devils

Aces

Boilermakers

Key

(Flyers)

 R S Z

 H L P

 B D F

 F P Z

5

25

20 30

40

35

20 40

50

10

30

10

30

50

SALE

Location_ID Location_Name

LOCATION

(4)

(12)

50

4,000

200

500

10,000

1,000

TREATMENT

PHYSICIAN

PERFORMANCE

ITEM

CONSUMPTION

PATIENT

Composite usage map (Mountain View Community Hospital)

